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ABSTRACT

This report evaluates the condition of the Pacific whiting (Merluccius

productus) resource in 1990, examines alternative harvesting strategies, and

develops a suggested acceptable biological catch (ABC) for 1991. The harvest

of Pacific whiting in 1990 is expected to be 269,500 metric tons (t), down

from a high of 309,000 t in 1989. The fishery continues to be supported by

the strong 1980 and 1984 year classes. Assessment surveys in 1989 estimated

the population biomass as 1.637 million t, a decline of 24% from estimates

made in 1986. In the 1990 assessment, the stock synthesis model was used to

estimate age-structured population abundance, past levels of female spawning

biomass, and recruitment for the 1959-87 year classes. The assessment model

was revised to include geographic structure; the parameters of a curve

defining the annual migration of fish across the U.S.-Canada border were also

estimated. Recruitment estimates and fishery selectivity coefficients from

the stock synthesis model were used with an age-structured simulation model to

estimate sustainable yield under different harvesting strategies and levels of

risk.  Several harvesting strategies are explored: a constant F strategy, a

variable F strategy where fishing mortality for a particular year is

proportional to the level of female spawning biomass, and a hybrid strategy

that combines features of the other two policies. The hybrid strategy avoids

the extreme variability in yield of the variable F strategy, yet protects the

stock at low levels of female spawning biomass. Long-term average yield

depends on the level of risk the managers are willing to accept. Risk is

associated with the probability that the female spawning biomass will fall

below a cautionary level of 457,000 t. Estimates of average yield ranged from

168,000 to 227,000 t for the constant F strategy and from 187,000 to 235,000 t

for the hybrid strategy over a reasonable range of risk levels. When a hybrid

fishing strategy is applied to the projected numbers at age in 1990, the

potential yield is calculated to be 253,000 t for a moderate-risk strategy.

The prospects in the immediate future for the Pacific whiting resource are for
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stable or declining yields depending on the timing of the next strong year

class.
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INTRODUCTION

Pacific whiting (Merluccius productus), also known as Pacific hake, is a

migratory gadid distributed along the west coast of North America from Baja

California to Queen Charlotte Sound. Adult Pacific whiting migrate north in

spring and summer, feeding in the productive waters along the continental

shelf and slope from northern California to Vancouver Island. In autumn,

Pacific whiting migrate south to spawning areas from Point Conception,

(Fig. 1), to Baja California (Bailey et al. 1982). The midwater trawl fishery

for Pacific whiting, operating in both U.S. and Canadian waters, targets on

dense feeding aggregations of fish that occur along the shelf break from April

to November.

Francis and Hollowed (1985) summarize the history of the coastal fishery

for Pacific whiting as follows. A small domestic fishery for whiting has

existed since at least 1879. The Soviet Union initiated a foreign fishery for

this species in 1966. Between 1973 and 1976, Poland, the Federal Republic of

Germany (West Germany), the former German Democratic Republic (East Germany),

and Bulgaria entered the fishery. The estimated catches of Pacific whiting

ranged from 118,000 to 238,000 metric tons (t) during this period of expansion

(Table 1). Catches peaked in 1976 and were subsequently reduced, due

primarily to restrictions on foreign effort imposed after implementation of

the Magnuson Fisheries Conservation and Management Act (MFCMA) of 1976.

A joint venture fishery for Pacific whiting started in 1978 between

foreign nations and the United States. In recent years (1980-88), this

fishery, involving predominately Soviet and Polish processing vessels, has

accounted for an increasing percentage of the whiting catch in the U.S. and

Canadian management zones. At the same time, the foreign fishery has declined

in importance (Table 1). In 1989, there was no foreign fishery for Pacific

whiting in U.S. waters. In Canadian waters, the foreign fishery has also

declined.

Combined U.S. and Canadian catches were below the recommended levels

during the period from 1977 to 1986. With the domestication of the U.S.

fisheries in the Gulf of Alaska and Bering Sea, foreign interest in Pacific,
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whiting has increased in the last few years. In 1987, the combined quota for

the United States and Canada exceeded the acceptable biological catch (ABC)

for the first time. The coastal Pacific whiting resource is now fully

utilized, and in 1989 the combined U.S. and Canadian catch was 309,000 t--the

largest yield since the inception of large-scale exploitation in 1966.

In 1990, research on the biology and management of the coastal Pacific

whiting population at the Alaska Fisheries Science Center (AFSC) focused on

1) investigation of the migratory characteristics of the population within the

stock synthesis framework; 2) analysis of the results of the 1989 west coast

acoustic and bottom trawl surveys, including reestimation of the natural

mortality rate; 3) examination of seasonal variability in the Pacific whiting

length-weight relationship to determine the impact of a compressed fishery on

the sustainable yield; and 4) development and analysis of a long-term

allocation plan to split the yield between the U.S. and Canadian fisheries for

Pacific whiting.

CATCH ATTRIBUTES

Catch-at-Age Estimates

Estimates of catch at age for the joint venture fishery in 1989 were

calculated using the procedure developed by Kimura (1989). With this method,

the yield for a given stratum is distributed by age by applying the length

frequency data to age-length and weight-length keys compiled for that stratum.

A background age-length key was used to fill in the gaps in the keys compiled

for each stratum. The following three spatial strata were used: 1) the EUR

region, the area from lat. 39°00'N to lat. 43°00'N, which contained the entire

Eureka International North Pacific Fisheries Commission (INPFC) region and a

portion of the Monterey INPFC region; 2) the southern Columbia (SCOL) region,

the area from lat. 43°00'N to Cape Falcon (lat. 45°46'N) in the Columbia INPFC

region; and 3) the Vancouver-North Columbia region (VNC), the area from Cape

Falcon to the U.S.-Canada border, which included the northern part of the

Columbia INPFC region and the U.S. portion of the Vancouver INPFC region
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(Fig. 1). Table 2 contains the estimated U.S. fishery catch at age for 1978-

89 (Jerald Berger, U.S. Foreign Fishery Observer Program, Alaska Fisheries

Science Center, National Marine Fisheries Service, NOAA, 7600 Sand Point

Way NE, BIN C15700, Seattle, WA 98115. Pers. commun., May 1990), and the

Canadian catch at age for the corresponding years (Mark Saunders, Pacific

Biological Station, Department of Fisheries and Oceans, Nanaimo, B.C. V9R 5K6.

Pers. commun., May 1990).

Spatial and Temporal Characteristics of the Catch

Figure 2 shows the spatial distribution of mid-water trawls in the 1989

U.S. joint venture fishery for Pacific whiting. In April, the fishery was

concentrated in the southern portion of the Columbia INPFC region and in the

Eureka INPFC region. In May, fishing effort was widely distributed from the

Eureka INPFC region north to the international boundary. In June, the area of

fishing activity contracted slightly, but remained widely distributed in

patches along the coast. Fishing activity tended to be concentrated near the

200 m isobath, which marks the edge of the continental shelf. In addition,

there was an area of intense fishing activity inshore of Heceta Bank located

near lat. 40°00'N.

The regional characteristics of the catch at age are shown in Figure 3.

As has been found in the past, older fish become proportionately more abundant

in the catch in the more northern areas. In 1989, the fishery operated

further south than it had in previous years, with most of the catch coming

from the Eureka and south Columbia regions. Figure 3 also documents the lack

of strong recruitment to the fishery since the 1984 year class.

As foreign interest in the Pacific whiting resource has increased, the

joint venture fishery has undergone a rapid evolution. In 1990, the U.S.

fishery, which formerly extended from late April to early November, was over

by 23 June, lasting less than 3 months. Participation in the fishery by

processing vessels of different nationalities has also changed. An increasing

percentage of Pacific whiting is being delivered to high capacity surimi

processors from Japan instead of the traditional Soviet and Polish vessels
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(Fig 4). The Pacific whiting joint venture fishery is currently managed under

the "Olympic system," which does not allocate between the various

nationalities of the processing vessels nor between the joint venture

companies. Under this system, increasing interest in the Pacific whiting

resource will further compress the fishery and will give the advantage to

processing vessels and catcher boats that can quickly process large volumes of

fish.

The domestic fishery for Pacific whiting has been concentrated in the

Eureka INPFC region in northern California, where several processing plants

specialize in Pacific whiting. Although this fishery has increased steadily

since 1986, it remains small relative to the total catch (Fig. 4).

GROWTH

Trends in Length at Age

Because changes in size have a direct effect on the available yield,

growth trends need to be examined to adequately assess the productivity of the

resource. Length-at-age estimates for Pacific whiting in the U.S. joint

venture fishery in 1989 were compiled using the procedure described in Dorn

and Methot (1990). Table 3 contains the 1989 length at age in the U.S. joint

venture fishery (Jerald Berger, Pers. commun., May 1990) and Canadian joint

venture fishery (Mark Saunders, Pers. commun., May 1990). Also given in

Table 3 are the a and b coefficients of an exponential length-weight

relationship of the form w = a 1b (Ricker 1975), estimated with nonlinear

regression. Figure 5 shows mean length at age in the U.S. fishery for the

months April-June for the years 1978-89. The months April-June were selected

so that length at age for earlier years could be compared to 1989, when the

fishery ended earlier than in previous years. A decline in mean length for

most ages is clearly evident, with the most substantial decline occurring from

1982 to 1988. Size at age for the younger fish has been stable in recent

years, A more direct assessment of current growth trends is made possible by

comparing the growth trajectory of the strong 1980 and 1984 year classes,
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which have dominated the catches in recent years (Fig. 6). The 1984 year

class was larger at age than the 1980 year class until 1989, when they were

approximately the same size.

Two independent papers on the growth trends of Pacific whiting have

recently been completed (Dorn 1990, Smith et al. 1990). These papers analyze

the length at age in the U.S. and Canadian fisheries respectively. The

analysis of the U.S. fishery data detected significant correlations between

annual growth and two environmental factors: sea surface temperature and adult

biomass. Reductions in annual growth were associated with both elevated

summer sea surface temperatures and increases in adult biomass. The analysis

of the Canadian fishery data found that the decline in the mean length at age

in the Canadian catch since 1976 was significantly correlated with an increase

in adult biomass and an increase in exploitation due to the Canadian fishery.

Oceanographic factors (sea level height, sea surface temperature, and

salinity) also had significant effects on length at age. Influence of

oceanographic factors on. the migration of different sized individuals into the

Canadian zone was proposed to account for this correlation.

Effect of a Shortened Fishery on Sustainable Yield

Since spring and summer are periods of rapid growth for Pacific whiting,

an early fishery, as occurred in 1989 and 1990, could affect sustainable yield

from the resource. To investigate this possibility we analyzed seasonal

changes in the length-weight relationship using the length-weight data from

1988, the last year that the fishery extended through the summer and into

fall. A factorial analysis of variance was used with the logarithm of weight

as a dependent variable and the logarithm of length as a covariate. The

factors were area, time period, age, and sex. See Reish et al. (1985) for an

equivalent analysis of the Atlantic menhaden (Brevoortia tyrannus). The model

is loge(weight) = a + b loge(length) --the log transform of the usual length-

weight relationship. The scale parameter, a, is the sum of the terms that
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enter the model linearly, while the power parameter, b, is the sum of the

interaction terms between the factors and loge(length).

Table 4 presents the analysis, and Table 5 gives the parameter

estimates. All factors were highly significant (p < 0.01) except region,

indicating that there is little geographic variability in the length-weight

relationship. The intercept coefficient and the coefficient for loge(length)

in Table 5 apply to the length-weight relationship of an age-l male in the

Eureka and Monterey INPFC regions in the early time period. The coefficients

for each linear factor level are the estimated difference in the scale

parameter in the length-weight relationship between individuals in that factor

level and those individuals with the intercept characteristic. The

coefficients for each interaction factor level are the estimated difference in

the power parameter in the length-weight relationship between individuals in

that factor level and those individuals with the intercept characteristic.

The parameter estimates in Table 5 are difficult to interpret because the

scale parameter and the power parameter are highly correlated.. However, using

these coefficients to predict weight for a given length, the following

conclusions can be drawn: 1) females are slightly heavier at length than the

males, 2) weight at length decreases with the age of the fish, and 3) weight

at length increases substantially during the fishing season.

Figure 7 shows the mean weight at age of fish in the U.S. fishery for

the early, middle, and late time periods. These weights were calculated by

obtaining mean length by time period and age for the years 1978-89. A

simplified ANOVA was used to estimate scale and power coefficients for time

period and age alone. These coefficients were used to convert the lengths to

weights. The estimated weights were multiplied by the correction factor,

e0’/2, to adjust for the bias that arises when regression coefficients

estimated using log-transformed data are used in predictive equations with the

untransformed data (Beauchamp and Olson 1973). The LOWESS scatterplot

smoother (Cleveland 1979) was used to smooth the weight-at-age data. Weight
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at age increases an average of 15.1% from the early to the middle time period,

and there is a further 8.3% increase in weight from the middle to the late

time period. The percent increase in weight is largest for the younger fish

and is less for the older fish.

To examine the effect of the seasonal exploitation pattern on

sustainable yield, we configured a yield-per-recruit model to describe the

seasonal patternof the Pacific whiting fishery. The smoothed seasonal

weights at age in Figure 7 were used in the model. Prior to 1989, 27.9% of

the catch in numbers came from the early period (April-June), 47.9% from the

middle period (July-August), and 24.7% from the late period (Sept.-Nov.).

This exploitation pattern was contrasted with the exploitation pattern that

occurred in 1989, when the fishery was over by the end of June. In the early

fishery alternative, sustainable yield for the U.S. fishery declined by 6.0%,

or approximately 9,300 t for a mean recruitment of 1.23 billion fish (1960-89

average). If the U.S. fishery operated only during the months of July and

August, the sustainable yield would increase by 7.4%, or approximately

12,000 t, over the current April-June fishery.

This analysis does not touch on the question of whether the loss of

catch biomass caused by taking fish early in the season represents a genuine

loss of yield (i.e., usable product), or whether the lost yield consists of

gonad or liver growth. This will be examined in-the future. However, yield

projections are based on a conversion of yield in numbers to yield in biomass

using weight-at-age vectors. If these weights at age are higher than those

actually occurring in the catch, a quota in biomass would impose a higher

mortality rate on the stock than intended.

Estimating Weight at Age for Stock Assessment Models

Estimates of weight at age are required both by the stock synthesis

model (Methot 1989) and by the population simulation model (Francis 1985) used

to determine the long-term productivity of the resource. The estimates of

weight at age in Dorn and Methot (1990) were updated with estimates of fishery

and population weight at age for 1989. Mean length at age (Table 3) was
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converted into weight at age using an exponential length-weight relationship

(coefficients in Table 3; Ricker 1975). To reduce the effect of measurement

error on the estimates of weight at age, the LOWESS scatterplot smoother in

the S statistical package (Cleveland 1979) was used to smooth the weight-at-

age data. Separate weight-at-age vectors were calculated for the U.S.

fishery, the Canadian fishery, and the entire west coast population.

1989 ASSESSMENT SURVEYS OF PACIFIC WHITING

Survey Design

Bottom Trawl Survey

The fifth triennial National Marine Fisheries Service (NMFS) groundfish

survey of west coast continental shelf groundfish resources was conducted

between 7 July and 29 September 1989, by the Resource Assessment and

Conservation Engineering Division (RACE) of the Alaska Fisheries Science

Center (AFSC). Previous surveys in this series occurred in 1977, 1980, 1983,

and 1986 (Dark et al. 1980, Weinberg et al. 1984, Coleman 1986, Coleman 1988).

The primary objectives of the 1989 survey were to assess the abundance of

Pacific whiting and juvenile (age l+) sablefish (Anoplopoma fimbria). The

survey focused on these two species while maintaining the broader,

multispecies assessment objectives of previous surveys. Accordingly, a

background sampling intensity comparable to the low density sampling in prior

surveys was used for the entire survey area, with heavier sampling

concentrated in four areas identified as high density strata for juvenile

sablefish: Juan de Fuca Canyon, Astoria Canyon, Half Moon Bay, and Morro Bay.

The survey was conducted aboard two chartered commercial trawlers and

extended northward from Point Conception, California, to central Vancouver

Island (Nootka Sound), British Columbia, Canada (lat. 34°30’N to lat.

49°35'N). Stations were-sampled at predetermined locations between 55 and
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366 m in depth (30 to 200 fathoms). Both vessels used standardized

Northeastern high-opening bottom trawls equipped with roller gear. The

fishing dimensions of the trawl were measured aboard each vessel using a

Scanmar net measurement system. Preliminary inspection of the data revealed

that the net used on the Pat San Marie had a 13.4 m mean path width, while

that used aboard the Golden Fleece had a 12.4 m mean path width.

The typical reduction in whiting and juvenile sablefish catch rates at

depths from 165 to 183 m served as the rationale for stratification at 183 m.

Thus , the shallow stratum ranged from 55 to 183 m, and the deep stratum from

184 to 366 m. Tracklines were drawn across both depth strata at 18.5 km

intervals. In the four high-density, juvenile sablefish strata, additional

tracklines were drawn midway between the 18.5 km tracklines, crossing only the

55 to 183 m depth stratum. Stations were randomly located along tracklines at

the rate of one station per 7.4 km in the shallow stratum, and one station per

9.3 km in the deep stratum. At least one trawl station was assigned to each

depth stratum along each trackline. The two vessels fished alternate

tracklines (alternate pairs in the high-density areas to minimize and to

assess the effects of between-vessel differences in fishing power.

A total of 601 predetermined stations were established for this survey;

46 stations were abandoned where they were considered untrawlable. Successful

trawl hauls were achieved at 540 of the 555 survey stations attempted. Tows

were made at a speed of 3 knots and were 30 minutes in duration, allowing 3 to

10 minutes between setting the winch brakes and beginning the tow to

allow the net to settle to the bottom. Efforts were made to maintain a

1 Reference to trade names does not imply endorsement by the National Marine
Fisheries Service, NOAA.
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constant towing depth. Catches were sorted, weighed, and counted by species,

and a variety of biological data (age, length, weight, and maturity of

individual specimens) were taken.

Results: Distribution and Abundance of Pacific Whiting

Pacific whiting dominated the catches in all INPFC areas except

Conception and Vancouver. In the Conception area it was fourth in abundance

after bocaccio (Sebastes paucispinis), Pacific sanddab (Citharichthys

sordidus), and widow rockfish (S. entomelas). It was second in abundance to

spiny dogfish (Squalus acanthias) in the Vancouver area. The shallow depth

stratum was typically dominated by Pacific whiting, although shallow catches

in the Conception and Vancouver areas were dominated by bocaccio and spiny

dogfish, respectively. Pacific whiting was also the dominant species in the

deep stratum everywhere except the Eureka INPFC area, where it was second to

sablefish. The distribution of Pacific whiting catch per unit effort (CPUE)

observations is shown in Figure 8 by individual haul, grouped by three levels

of magnitude. Age-structured estimates of abundance and biomass by INPFC

region for Pacific whiting are given in Tables 6 and 7. These estimates were

produced using standard area-swept methods (Weinberg 1984) to estimate total

biomass by region. The biomass by region was further partitioned using the

data from the biological samples (age, length, and weight) to produce the age-

structured estimates of abundance and biomass. Methods are described in

Weinberg (1984).

Survey Design

Acoustic Survey

The triennial acoustic-midwater trawl survey of the coastal Pacific

whiting population was conducted using the National Oceanic and Atmospheric

Administration (NOAA) research vessel Miller Freeman during the periods
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22 July-4 August and 7-25 August 1989. The survey was comparable in extent to

those conducted in 1977, 1980, 1983, and 1986. The major objective of the

acoustic survey was to provide data for the estimation of age- and size-

specific biomass and population abundance of Pacific whiting.

Survey data were collected along a series of parallel tracklines spaced

10 nautical miles (nmi, 1 nmi = 1.852 km) apart and run east to west between

the 55 m (30 fathoms) and 366 m (200 fathoms) depth contours starting from

lat. 34°30'N and extending north to near lat. 50°00'N. (Point Conception to

northern Vancouver Island). A chart shoving the survey area and transect

locations is shown in Figure 9. All midwater trawling and acoustic surveys

were conducted during daylight hours to avoid interception of nontarget

species which ascend from the bottom into the water column at night.

Transecting speed was usually l0-11 knots. Echo sign could consistently be

detected and echo integration data collected to within 3 m of the bottom.

Acoustic data were collected with a 38 Khz. echo sounder and a digital

echo integrator. The echo sounder's transducer was housed in a dead-weight

vehicle that was towed behind the ship by an electro-mechanical cable at a

depth of about 20 m. The acoustic data collection system was housed in a

portable van mounted on the weather deck of the ship. Calibration of the

system was accomplished in the following two ways: an indirect method using an

acoustics measurement barge before and after the cruise and a direct (in situ)

method using a standard sphere suspended under the transducer. Acoustic barge

measurements were used to, determine the directivity pattern of the transducer

while the in situ ball method supplied the remaining parameters necessary to

scale echo integration values to fish density (kg/m3). The in situ

calibration was conducted during the first and last 2 days of the cruise.
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Biological data and samples were collected and echo sign was identified

throughout the cruise using a Northern Gold rope trawl equipped with 5 m2

doors and 455 kg (1,000 lb.) tom weights. The codend was equipped with a

3.2 cm (1.25 inch) liner. An acoustic-linked headrope sounder was used to

monitor the mouth opening (usually 15-18 m), and the position of the trawl in

the water column (8-10 fathoms). Trawl hauls were made on selected echo sign

to provide information on the biological composition of Pacific whiting and

other species. Standard on-deck catch sorting and enumeration procedures were

used. Catches were sorted completely, except when they exceeded about 1,000

kg; in such cases the catch was split and then sorted. Species compositions

were determined in terms of weight and numbers. A subsample of manageable

size (300-400 fish) from the sorted catch was then randomly selected for

detailed examination and biological sample collection (size measurements, age

structures, sexual maturity, sex ratio, individual weights, etc.). Trawl

catch data were used only to identify and categorize the species and size

compositions of fish represented by the various layers and groups of echo sign

encountered during the survey. Estimates of age- and size-specific biomass

and abundance of Pacific whiting were-produced using standard methods for

analyzing acoustic surveys of fish populations as described by Dark et al.

1980.

Survey Results

A total of approximately 2,500 nmi of transect lines were run during

which hydroacoustic data were continuously collected and 25 midwater trawl

hauls were conducted. Most of the trawl catches consisted mainly of Pacific

whiting. The percentage by weight represented by all species other than

Pacific whiting in all trawl hauls combined amounted to only 2.2%. This small

amount of contamination of the hydroacoustic data by nontarget species was
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assumed to be insignificant, and no correction of the total estimated biomass

of whiting was made.

Significant whiting aggregations were found from about lat. 37°30'N to

lat. 50°00'N. The bulk of the whiting stock occurred in the Eureka, south

Columbia, and Monterey INPFC areas. A chart showing the locations of the

aggregations is given in Figure 10. Figure 10 is provided only as a reference

to indicate the presence or absence of whiting occurrence; it does not imply

how dense or abundant the fish were within any area or aggregation.

Significant numbers of young-of-the-year whiting were found in the Conception

INPFC area where they were in small, isolated aggregations (Fig. 10) that were

associated with large quantities of nonfish echo sign. The abundance

estimates given in this report for age-0 whiting (<20 cm) should be used only

as indicators, since the degree of contamination of their echo sign by other

species could not be determined with confidence. Fish smaller than 39 cm were

found in the Monterey and Eureka areas and a trace of small fish continued

into the south Columbia area. Most of the whiting population found throughout

the survey area consisted of fish greater than 39 cm in length (Fig. 11). A

consistent trend of increasing mean length with increasing latitude from the

Eureka to Vancouver INPFC areas is noticeable.  The effect is somewhat masked

by the occurrence of some large fish in the southern and northern parts and

very few large fish in the intermediate part of the survey area. The only

age-0 fish encountered during the survey were in the Conception INPFC area.

Significant numbers of whiting aged 2-4 years occurred only in the Monterey

and Eureka INPFC areas and were not in exceptional abundance. Two cohorts,

the 1984 and 1980 year class (age 5 and 9, respectively), were of greatest

abundance in all areas except Conception. They contribute about 43% in

numbers and 82% by weight, to the total pelagic portion of the whiting
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population (Tables 8 and 9). These data do not indicate more than moderate

recruitment by any of the year classes younger than 1984.

Comparison of Combined Survey Results with Previous Surveys

Although we follow the usual practice of assuming that the two surveys

can be added to estimate the total abundance, it needs to be stressed that

this assumption has not been critically assessed. Recent investigations of an

inshore population of Pacific whiting have demonstrated that the fish dive

towards the bottom with the passage of trawl gear so that some of the fish

captured by trawl gear may actually be quite high in the water column

(Nunnallee 1991). However, the distinctly different age composition for the

acoustic and bottom trawl surveys in the same geographic area (See for example

the age composition in the Canadian zone in 1989, Tables 6 and 8) suggests

that at least some of the fish captured by the bottom trawl survey are not

vulnerable to acoustic sampling methods. Biomass by region (with 95%

confidence intervals) for the 1989 bottom trawl and acoustic surveys is given

in Table 10. A comparison of the 1989 estimates with earlier quantitative

surveys of Pacific whiting is given in Table 11 and Figure 12 (Dark et al.

1980, Weinberg et al. 1984, Nelson and Dark 1985, Coleman 1986, Coleman 1988,

Neal Williamson, Alaska Fisheries Science Center, National Marine, Fisheries

Service, NOAA, BIN C15700, 7600 Sand Point Way NE., Seattle, WA 98115. Pers.

commun., May 1989). The fraction of the total biomass estimate contributed by

the bottom trawl survey was 6% in 1977; it remained relatively constant at l0-

12% for the surveys in 1980, 1983, and 1986. In 1989, however, the bottom

trawl contributed 23% of the total survey biomass.

Numerical estimates of abundance for the Canadian portion of the

Vancouver INPFC area for 1977 and 1986 (Table ll), when the NMFS trawl surveys

ended at the international boundary, were obtained by the following procedure.
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The sum of the trawl biomasses estimated for the Canadian portion of the

Vancouver INPFC area by the surveys in 1980, 1983, and 1989 was divided by the

sum of the acoustic biomasses for the same years to obtain a ratio. This

ratio was multiplied by the acoustic biomass in 1977 and 1989 to estimate the

trawl biomass for those years. Next it was assumed that the trawl age

composition in 1977 and 1986 in the U.S. portion of the Vancouver area was

representative of the age composition of the trawl biomass in the Canadian

Vancouver area. Thus the ratio of the estimated trawl biomass in the Canadian

Vancouver area to the trawl biomass in the U.S. portion of the Vancouver area

was multiplied by numbersat age in the U.S. portion of the Vancouver area to

estimate numbers at age in Canadian Vancouver area.

NATURAL MORTALITY ESTIMATION

New estimates of the natural morality rate were obtained by examining

the  decline in abundance of a year class from one triennial survey to the

next. To reduce the possibility of misageing and sampling variability causing

implausible estimates of the natural mortality rate, only the dominant year

classes (1967, 1970, 1973, 1977, 1980, and 1984) were used in the

calculations. A previous effort to estimate the natural mortality rate of

Pacific whiting using the decline of groups of year classes between surveys

(Hollowed et al. 1988) used the Baranov catch equations to estimate the

natural mortality rate of Pacific whiting. Therefore, they make the

assumption that the catch occurs continuously from one survey to the next.

This assumption is reasonable if there are no trends in the exploitation rate

from one survey to the next. However, since the fishery for Pacific whiting

has increased substantially since 1986, we considered it important to develop

a model that removes the catch from the population when it occurs. To do
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this, a generalization of the catch equation used in cohort analysis (Pope

1972) was developed. If N is the estimated population abundance at the start

of the 3-year time period, and N1 is the number at the end of the time period,

then

where d1 is the length of time from the start of the time period to when

catch c1 was removed from the population. This equation can be solved for M,

the natural mortality rate, using the Newton-Raphson algorithm.

Table 12 contains the natural mortality estimates for the dominant year

classes using the triennial stock assessment surveys in 1977, 1980, 1983,

1986, and 1989. Estimates in Table 12 for the natural mortality rate were

slightly smaller than those calculated for the same year classes using the

method in Hollowed et al. (1988) (mean difference 0.005, maximum difference

0.025). This indicates that the errors caused by trends in the harvest rate

in the model used by Hollowed et al.(1988) are relatively minor. The

estimates of natural mortality before 1983 tended to be higher for all ages

than the estimates since 1983. It is possible to interpret these results as a

shift in the natural mortality rate. However, we are reluctant to put this

forward as a hypothesis because a single aberrant survey estimate of overall

abundance would perturb in opposite directions the natural mortality estimates

that use the abundance estimate as a starting value and those that use it as

an ending value.

POPULATION ASSESSMENT

The abundance and mortality of Pacific whiting was assessed with the

stock. synthesis model (Methot 1986, 1989, Dorn and Methot 1990). The
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synthesis model is a separable catch-age analysis which uses survey estimates

of biomass and age composition as auxiliary information. The synthesis model

operates by simulating the dynamics of the population. Comparisons are made

between the expected value of the observable characteristics of the population

and the actual observations of the population from surveys and fishery

sampling programs. The goodness of fit to these observations is evaluated in

terms of log(likelihood). The total log(likelihood) is a weighted sum of the

likelihood components for each type of data.

The model assumes that fishing mortality can be separated into an age-

specific component and a year-specific component. A double logistic

selectivity curve was used to model the age-specific survey and fishery

selectivity (Dorn and Methot 1990). The year-specific fishing mortality rates

are not estimated as parameters. Instead, they are tuned to the levels

necessary to match the observed catch biomass. The model parameters are

estimated by an iterative process which involves numerical estimation of the

first derivatives of total log(likelihood) with respect to each parameter, and

the Hessian matrix of mixed partial derivatives. The inverse of the Hessian

matrix postmultiplied by the vector of first derivatives indicates how the

parameters should be changed.

The observations for Pacific whiting are catch biomass and age

composition for the U.S. and Canadian fisheries, and estimates of population

biomass and age composition in the U.S. and Canadian zones from NMFS triennial

groundfish assessment surveys. In last year's stock assessment (Dorn and

Methot 1990), the catch at age for the two fisheries was combined and modeled

as a single fishery. Last year's stock assessment also explored other ways of

modeling the population, including a preliminary version of a model that

separated the stock between the U.S. and Canadian zones. This year our
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approach was to keep separate the catch statistics and survey estimates of

abundance in the U.S. and Canadian zones. In the discussion and in the

following tables we have used the terms "U.S. survey" and "Canadian survey" to

identify the data from the NMFS triennial groundfish assessment surveys in

U.S. and Canadian waters. The selectivity for each fishery and survey was

modeled relative to the portion of the stock in its zone. In addition to the

parameters normally estimated by catch-age analyses (initial age composition,

recruitment in each subsequent year, and age-specific selectivity curves), we

also estimate the parameters of a function that governs the annual migration

of fish from the U.S. to Canadian waters.

The modeled population includes ages 2-15; age 15 is treated as an

accumulator age. Most model runs covered the years 1977-89 --the time period

for which there was age composition data for the U.S. and Canadian fisheries,

and estimates of the total abundance of Pacific whiting from the triennial

surveys. In last year's assessment, age composition data for 1973-76 from

Polish researchers were included in the baseline estimation runs. These runs

were used to estimate survey and fishery selectivity curves, annual migration

curves, age composition at the beginning of 1977, and year-class strength for

the 1975-87 year classes. Selectivity patterns and migration curves were

fixed at the values estimated in these runs, and the time series was extended

back to 1958 so that historical recruitments could be estimated. Body weights

at age were set at year- and fishery-specific values for the years 1978-89.

Fish from earlier years were assumed to have the same weight at age as those

from 1978.

Geographic Catch-Age Analysis and Migration Curves

The U.S. and Canadian fisheries for Pacific whiting are confined to

small regions--of the total geographic range occupied by the Pacific whiting
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population. Each fishery, obviously, is restricted to its respective national

zone. A ban on all foreign processing south of lat. 39°00'N, and a ban on

processing by Soviet, Polish, and mainland Chinese vessels north of lat.

48°00'N further limits the U.S. joint venture fishery. These fisheries

harvest a population that changes in composition from south to north along the

coast. Immature age groups are most abundant off the California coast. As a

year class becomes older, its summer feeding migrations extend further north,

and by age 5 the fish begin appearing in the Canadian zone in significant

numbers (Bailey 1981). Using an assessment model with geographic structure

allows us to more accurately model U.S. and Canadian fisheries. This

capability has become essential in recent years as exploitation rates have

increased at a different pace on either side of the border.

Geographic structure is included in the model by dividing the population

into U.S. and Canadian components at the start of the year. The usual

equations governing the population dynamics (exponential mortality and Baranov

catch equations) are assumed to apply in each zone. At the end of the year,

all the fish from both zones are assumed to mix on the spawning grounds off

California.  The population is split between the U.S. and Canadian zones using

a migration curve, defined as the age-specific fraction (in numbers) of the

population migrating into the Canadian zone. Based on an analysis of survey

data (Dorn and Methot 1990), we modeled this migration curve using a modified

logistic function

where t is age in years, p1 is the inflection age, p2 is the slope, and p3 is

the fraction of the oldest age group migrating into the Canadian zone. This

curve describes the mean migratory behavior of the population for all years.
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However, since year-to-year variability in the fraction migrating into

Canadian waters has been observed, an annual migration coefficient, py, is

also estimated. This annual migration coefficient modifies the parameters of

the mean migration curve as follows:

where p4 is an additional parameter that makes the change in pl for a year

proportional to the change in p3. Coupling the change in the inflection age

for a given year with the fraction of the older fish migrating into Canada is

a way of modeling the observation that years when a higher than usual fraction

of the older fish migrate into the Canadian zone are also years when more of

the younger fish are found in the Canadian zone.

Modeling the annual variability in migration increases the total

log(likelihood) from -821.98 to -631.22, a sizable improvement in fit

(Table 13). Changing from a model with a single year-invariant migration

curve to a model where annual migration coefficients are estimated only for

the survey years produces most of the improvement in fit. The fit to the

Canadian fishery age composition data improves the most, although the fit to

all the data components improves. Changing to a model with annual migration

coefficients for all years further increases the total log(likelihood). All

the increase is due to an improved fit to the Canadian fishery age composition

data (Table 13). Estimated migration curves for 1982-89 are shown in Figure

13. In 1983, a much higher than usual fraction of the older age groups

migrated into the Canadian zone. In 1985 and 1989, a smaller than usual

fraction of the older age groups migrated into the Canadian zone.  Table 14
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contains the population numbers at age in each geographic zone for the years

1977-89 as estimated by the stock synthesis model.

Modeling Survey Abundance and Selectivity

The zone-specific biomass estimates from the triennial surveys were

adjusted because of incomplete coverage of potential Pacific whiting habitat

in some years. The first of these adjustments involved the surveys in 1977

and 1986, when the trawl survey ended at the international boundary. Details

of this adjustment are described above. A second adjustment involved all the

surveys. We accept the conclusions of qualitative Canadian acoustic surveys

along the west coast of Vancouver Island and into Queen Charlotte Sound (Mark

Saunders, Pers. commun., June 1990) that the triennial NMFS surveys have not

extended to the northern limit of the summer distribution of the Pacific

whiting. Northern expansion factors were calculated for the survey biomass in

the Canadian zone pending improved surveys of Pacific whiting biomass from

these northern regions. The expansion factors, calculated for each survey

year, were based on the ratio of whiting habitat in the surveyed area to the

potential whiting habitat along the 100 fathom isobath north of the survey

limit. The estimated biomass north of the survey was 14% of the surveyed

biomass in Canada in 1977, 1980, and 1989; 20% in 1983; and 23% in 1986 (Mark

Saunders, Pers. commun., June 1990). The expansion factor was different for

different survey years because the northern limit of the NMFS surveys varied

from year to year. All of the stock synthesis models described in this report

used the expanded survey biomass estimates for the Canadian zone.

Separate selectivity curves were used for the triennial surveys in the

U.S. and Canadian zones. For the U.S. survey, separate selectivity

coefficients were estimated for the youngest age groups; otherwise, the

selectivity was assumed to be 1.0. For the Canadian survey, the youngest age
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groups were assumed to have a selectivity of 1.0, but a descending logistic

curve was used to describe the declining selectivity of the older ages.

Table 15 contains a range of different hypotheses concerning the

selectivity of the younger age groups by the U.S. surveys. The options

presented are 1) all age groups are fully selected; 2) only the selectivity

coefficient at age 2 is estimated; 3) selectivity coefficients are estimated

at both ages 2 and 3; and 4) selectivity coefficients are estimated at

ages 2-4, and all other ages are fully selected. When the assumption that the

younger ages are fully selected is relaxed, the fit of the model improves.

Most of the improvement, as measured by the change in the overall

log(likelihood), occurs when the model is allowed to estimate the selectivity

of the age-2 fish. Estimated biomass for the start of 1990 also increases as

the selectivity of the younger fish is allowed to be less than 1.0. This

increase is due to upward revisions in the size of the 1984 year class,

surveyed at age 2 in 1986, and the 1987 year class, surveyed at age 2 in 1989.

Our subsequent analyses are based on the third option, where selectivity

coefficients were estimated for the age-2 and age-3 fish. We made this choice

because the triennial surveys have not covered the range of immature Pacific

whiting, which extends well south of Point Conception (Bailey and Francis

1985). The selectivity coefficients should be well estimated at ages 2 and 3

because large year classes have been surveyed at those ages: the 1984 year

class at age 2 in 1986, the 1977 year class at age 3 in 1980, and the 1980

year class at age 3 in 1983. We recognize, however, that the question of the

availability of the young fish to the surveys will need to be revisited in the

future as the 1984 and 1987 year classes move through the population.
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Fishery Selectivity

Selectivity patterns for the U.S. and Canadian fisheries were modeled

using double logistic selectivity curves. These selectivity curves apply to

the fraction of the population found in each nation's zone. Figure 14 shows

the estimated selectivity curves for the U.S. and Canadian fisheries. Both

fishery selectivity curves are dome-shaped, with the U.S. fishery curve

reaching a maximum at age 8, and the Canadian fishery curve reaching a maximum

at age 11. The ascending limb of the Canadian selectivity curve is poorly

determined because few of the younger fish are found in the Canadian zone.

Since we have removed the effect of different mean age structure in each zone

on fishery selectivity by using a geographic model, one would expect that the

selectivity curves for the two fisheries would be approximately the same.

Selectivity should be based exclusively on the physical characteristics of the

gear (i.e., mesh size) and the age-specific behavioral characteristics of the

population. We suspect that the U.S. fishery selectivity curve focuses the

activity of the fishery on younger fish more than the Canadian fishery because

the U.S. fishery can target on strong year classes at a young age by shifting

south in the U.S. fishing zone. This opportunity is not available to the

Canadian fishery.

Emphasis on Survey Biomass Likelihood

The emphasis placed on each component of the total log(likelihood)

function determines how closely the model's estimates will approach the

observations of that type. By varying the emphasis factors one is able to

detect inconsistencies among the types of data. We investigated the

sensitivity of the results to the emphasis on the likelihood component for

surrey biomass (Table 16). Equal weights were given to the survey biomass

estimates in the U.S. and Canadian zones. Survey biomass is an extremely



24

important element in the estimation procedure because it links the information

in catch-age data on relative year-class strength with an absolute measure of

abundance. The model tends to match the 1980 and 1989 survey biomass values

very closely (Fig. 15). In 1977 and 1983, the model's expected survey

biomass was greater than that actually observed. In 1986, the expected survey

biomass was less than that observed by the surveys. As shown in Table 16, an

increase in the emphasis on the likelihood component for survey biomass causes

changes in the estimated strengths of the large year classes. These changes

improve the fit to survey biomass, but degrade the fit to the U.S. fishery age

composition, the Canadian fishery age composition, and to the survey age

composition in each zone (Fig. 16). We selected an emphasis level of 5.0 to

provide a reasonable compromise between the fits of the various types of data.

We also investigated the influence of the 1989 survey biomass

observation on our current assessment of the stock. An ideal situation would

be one in which the predicted survey biomass in 1989 matches the observed

biomass even when no weight is placed on it in the estimation procedure.

Figure 17 contrasts the estimates of recruitment and population biomass for

two estimation runs of the model. In the first run the 1989 survey biomass is

given the same weight as the other survey biomass observations. In the second

run the 1989 survey biomass is given no weight in fitting the model. The

predicted survey biomass in 1989 is 95% of the observed survey biomass in the

first run, but only 79% of the observed survey biomass in the second run. The

model fits the 1989 survey biomass observation by increasing the abundance of

the 1980 and 1984 year classes. An anomalous biomass observation at the end

of the time series is probably easier to fit than an anomalous observation in

the middle of the time series because the model has to balance the fit between

that observation and the-observations occurring earlier and later.
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Consequently, the success the model has in fitting the 1989 survey biomass

when it is given normal emphasis should not lead us to conclude that it is a

reliable estimate. Although we do not de-emphasize the 1989 survey biomass in

our final model, we recognize its critical influence on our assessment of the

current abundance -of the resource, and ultimately on our short-term

projections of yield.

Natural Mortality Sensitivity Analysis

Natural mortality rates are not well known for most exploited marine

fish populations, and the coastal Pacific whiting population is no exception.

When there is a lack of sufficiently compelling evidence to the contrary, a

constant mortality rate, irrespective of age, is generally adopted as a null

model. Last year's Pacific whiting assessment (Dorn and Methot 1990)

demonstrated that the observed rapid decline in abundance of the oldest age

groups in the survey data was equally consistent with the assumption that

these older fish are not sampled by present survey designs, or with the

assumption that natural mortality increases with age. At moderate

exploitation rates, these older fish would not be caught by either the U.S. or

Canadian fishery, and thus the consequences of either assumption is most

important when assessing the reproductive potential of the stock, as when

calculating spawning biomass.

To assess the sensitivity of the model fit to the choice of a constant

natural mortality rate, the natural mortality was varied between 0.16 and

0.36. The log(likelihood) was maximum between 0.24 and 0.26 (Fig. l8),

indicating that the value of M - 0.237 estimated by the cohort decay method is

a reasonable choice. This value was used in all other model runs. The model

estimates a constant natural mortality rate of 0.252 when given an initial

value of 0.237 and is allowed to produce its own estimate. However, since the



26

improvement in the fit is small--an increase of 4.0 units in the

log(likelihood)) --we do not advocate using the natural mortality rate

estimated by the model. This analysis does suggest that a natural mortality

rate of 0.2, used in previous assessments, may have been slightly too low.

The estimated biomass for the start of 1990 was sensitive to the choice of a

natural mortality rate (Fig. 18). The estimated 1990 biomass was largest when

a low natural mortality rate was used, and declined as the natural mortality

rate was increased. From M = 0.18 to M = 0.28 there was little change in the

estimated biomass for 1990.

Ageing Error

The problem of how to handle outliers in catch-age models has received

little attention in the literature. In some cases it is fairly obvious that

ageing error is the culprit, such as when the diagonal path of a strong year

class through the catch-at-age matrix jumps a line. Since this usually occurs

towards the margins of the catch-at-age matrix (the youngest and oldest age

groups), the strategy we adopt is to accumulate the questionable age groups

out towards the margins of the catch-at-age matrix. The expected catch of the

accumulated age groups can then be compared with the observed catch of those

age groups. We were able to use this technique in three instances. First,

the strong 1970 year class began to blur into the 1971 year class in 1978.

This apparent error was accommodated by accumulating at age 7 in 1978, 8 in

1979, 9 in 1980, etc. Second, previous analyses have noted that the strong

1977 year class appeared as 3-year-old fish in 1979 because of a small sample

size in the age-length key for that year. This problem was accommodated by

accumulating the age-2 and age-3 fish in both the data and the model's

estimate for the year 1979. Finally, the strong 1961 year class was prominent

in the 1965-68 samples (Dark 1975); in 1969, the age composition was dominated
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by 7-year-old fish. We suspect that this age mode was actually the 1961 year

class, misaged by one year. Therefore, we accumulated at age 7 in the 1969

age composition sample.

Systematic ageing error was incorporated into the model by assuming that

the standard deviation of observed age increases linearly with true age. The

parameters which define this linear trend are the fraction misaged at age 2

and the fraction misaged at age 15. Allowing the model to estimate these

parameters can shrink the recruit estimates of the weak year classes to zero.

If aging error is too large the abundance of the weak year classes can be

accounted for entirely by spillover from the adjacent strong year classes.

Because the otoliths of Pacific whiting are relatively easy to age, they are

used by the AFSC Age and Growth Task to train new ageing technicians.

Accordingly, we used percent agreement from reader-tester validations from the

1989 fishery age sample to provide a reasonable estimate of systematic ageing

error (Mark Blaisdell, Alaska Fisheries Science Center, National Marine

Fisheries Service, NOAA, 7600 Sand Point Way NE, BIN C15700, Seattle, WA

98115. Pers. commun., July 1990). A regression line constrained to pass

through zero at age 2 was fit to the percent agreement for the most abundant

age groups in the 1989 age sample (ages 2, 5, 9, 12). The fraction misaged

was estimated to increase from 0% at age 2 to 25% at age 15.

Reconstruction of Historical Abundance and Recruitment

Prior to 1977, our sources of information on the coastal population of

Pacific whiting begin to thin out. U.S. fishery age composition for the years

1973-76 is available from sampling conducted by Polish researchers (Morski

Instytut Rybacki 1977). Dark (1975) provides estimates of age composition for

the years 1965-69 obtained primarily from research cruises off the southern

coast of Washington. Finally, a time series of yield in biomass for U.S. and
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Canadian waters extends back to the inception of the large-scale fishery in

1966 (Bailey et al. 1982). These yields were reported by the foreign

nationals conducting the fishery and were not subject to independent

verification.

To model these data we begin by assuming that the population had an

equilibrium age composition in 1957. Equilibrium age-2 recruitment was set at

1.2 billion fish--approximately the mean recruitment for the years 1958-89 as

determined by preliminary runs. The abundance of this assumed equilibrium

population will affect the estimated magnitude of the recruitment in the early

years. However, as reported previously, this effect degrades rapidly (Dorn

and Methot 1990). The age composition data from Dark (1975) came primarily

from the southern coast of Washington, and so we expect them to represent a

selectivity pattern different from that of the current coastwide U.S. surveys.

We modeled these data as a nonquantitative survey, since no biomass estimates

are available, and we used a separate double logistic function to model the

selectivity pattern. To prevent the assumed equilibrium age composition from

influencing the fit to the 1965-69 data, we truncated the 1965 samples at age

9, the 1966 samples at age 10, and so on. The 1969 age composition was

accumulated at age 7, as noted above, because of an apparent bias in the

ageing of the 8-year-old 1961 year class.

Population abundance and recruitment prior to 1977 were estimated by

fixing most of the parameters of the model at values estimated using only the

data for 1977 and later. Fishery and survey selectivity curves were fixed, as

were estimates of recruitment abundance for 1977 and later. A single fixed

mean migration curve was used rather than to attempt to model the interannual

variability in migration for the earlier years. Although we estimated

recruitment beginning with the 1956 year class, we do not support the
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estimates for the 1956 and 1957 year classes because of their dependence on

the assumed initial population level and the short duration they were observed

as age 8-9 fish in 1965-66.

Preliminary runs of the model revealed that the Polish age composition

data in 1975 was not consistent with the fishery selectivity pattern of other

years. Most of the lack of fit was due to a much higher catch of age-2 fish

than expected. In 1975, the fishery operated south of its normal range, with

approximately 70% of the U.S. catch coming from the Monterey INPFC area. In

our final model, we estimated a separate double logistic selectivity curve for

the U.S. fishery in 1975. The selectivity of the age-2 fish was estimated as

0.19, as compared to a selectivity of 0.04 for the other years. The

selectivity at age for this curve is given in Table 17. Other selectivity

curves used in the model to reconstruct the historical time series of

recruitment are also given in Table 17.

The reconstructed time series of recruitment (Table 18) is similar to

that estimated in last year's stock assessment using the stock synthesis model

(Dorn and Methot 1990). The 1961, 1970, 1973, 1977, 1980, and 1984 year

classes again stand out as exceptionally strong year classes. Year classes

from the late 1960s appear to have been less variable than those of the late

1970s and 1980s. Another possible explanation is that less precise ageing

during the early 1970s caused the early year classes to appear more similar in

size. Because we model the age composition data and the catch statistics from

the 1960s differently, we now estimate the abundance of the 1961 year class at

3.502 billion fish at age 2 rather than 5.160 billion fish as was estimated in

last year's assessment (Dorn and Methot 1990). Recruitment estimates for the

1980 and 1984 year classes are larger than last year's estimates. This change

is due to the unexpectedly large 1989 survey biomass estimate and to the
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different assumptions we make concerning the survey selectivity of the younger

fish.

The estimates of population biomass are less variable than last year's

estimates. Our revised recruitment estimate for the 1961 year class no longer

produces a sizable increase in population biomass in the late 1960s. The

larger estimates of recruitment for the 1980 and 1984 year classes prevent the

large fishery removals of recent years from significantly reducing the

population biomass.

The annual full recruitment fishing mortality rates in the U.S. and

Canadian zones are shown in Figure 19. The Canadian fishing mortality rate

was high in the late 1960s and early 1970s, dropped to very low levels in the

mid- to late 1970s, then increased rapidly in the 1980s. The U.S. fishing

mortality rate varied between 0.10 and 0.20 for most years. Recently, the

U.S. fishing mortality rate has also increased.

Pacific Whiting Discard: Does it Matter?

Any analysis of discard in the Pacific whiting fishery must first

acknowledge the complete lack of quantitative data on the magnitude of

discard. Observer reports of floating rafts of dead whiting on the fishing

grounds are most likely the result of catcher boats spilling codends that

exceed delivery requests. The frequency of these events is unknown. Another

situation where there may be significant discard of Pacific whiting is in

domestic fisheries that target on other species. The triennial trawl surveys

have consistently found that Pacific whiting dominates the biomass at all

depth strata (Weinberg et-al. 1984; Nelson and Dark 1985; Coleman 1986;

Coleman 1988). Since the domestic market opportunities for the sale of

Pacific whiting are extremely limited, virtually all of the whiting bycatch in

fisheries targeting on other species, especially rockfish, would be discarded
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at sea. It is reasonable to assume that these fisheries have the ability and

some motivation to avoid areas with the highest Pacific whiting catch rates.

Our approach to this issue was to investigate a range of plausible discard

levels from the directed fishery for Pacific whiting. The results are

presented in Table 19. As the level of discard was increased, the fit of the

model degraded slightly. Estimated age 2+ biomass at the start of 1990

remained nearly identical regardless of the level of discard. Apparently the

model responds to increasing discard rates by increasing the recruitment until

it can match the survey estimates of population biomass. This analysis

suggests that if the discard rate remains constant from year to year, the

presence of moderate levels of discard does not seriously affect our ability

to assess the population.

ESTIMATION OF SUSTAINABLE YIELD

Population Dynamics

The age-structured simulation model of Francis (1985), used in previous

stock assessments to estimate sustainable yield, was revised to correspond to

the geographic catch-age model used in population assessment. Geographic

structure was included in the model by using a single mean migration curve to

split the stock between the U.S. and Canadian zones at the start of the year.

For the U.S. and Canadian components of the population, the equations for the

dynamics of the population are identical to that of earlier versions of the

model. Based on an analysis of survey and catch data described earlier, the

natural mortality rate was assumed to be constant with respect to age at

0.237. Separate weight-at-age vectors for the U.S. fishery, the Canadian

fishery, and for the population were used. These were estimated by averaging

weight at age for the years 1978-89 separately for each source. Since there
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has been a substantial decline in weight at age for the past decade, this gave

compromise estimates of weight at age that are larger than currently observed

in the fishery, but smaller than 10 years ago. Calculating the total yield in

biomass was considerably more straightforward than in previous models. The

estimated catch at age in each zone was multiplied by the fishery-specific

weight at age and summed over age to give the total yield.

Age-specific fishing mortality rates were modeled as the product of an

annual fishing mortality rate and an age-specific selectivity coefficient.

Separate vectors of selectivity coefficients, estimated by the stock synthesis

model, were used for the U.S. and Canadian fisheries (Table 20). The annual

control variable in this parameterization is the full recruitment fishing

mortality in the U.S. zone, Fus(y). Obtaining a fishing mortality rate for

the Canadian zone requires a decision on how to allocate the resource between

the U.S. and Canadian fisheries. We set the fishing mortality rate in the

Canadian zone so that the percentage of the total yield harvested by the

Canadian fishery would be equal to the percentage of the mature biomass

expected to migrate into Canadian waters. This was calculated using the mean

fraction of mature fish at age in each zone as estimated by the stock

synthesis model. To estimate the split in mature biomass for a particular

year, the projected numbers of mature fish at age for that year were split

between the two regions using the mean migration curve, converted to biomass

using zone-specific body weights at age, then summed over all ages to get the

estimated total mature biomass in each zone. It should be emphasized that we

are not recommending this procedure as an allocation plan. Our purpose is

only to specify a reasonable allocation algorithm for the simulation runs.
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Recruitment

Although establishing a stock-recruit relationship is an important

element of assessing the productivity of the resource, a careful examination

of the observed relationship between the female spawning biomass and

recruitment (Fig. 20) does not disclose any obvious relationship over the

range observed. In particular, the data shown in Figure 20 do not lend

themselves to description by a parametric curve with a log-normal error

assumption. Hollowed and Bailey (1989) use the time series methods of Welch

(1987) to filter density independent variability from the recruitment time

series of Pacific whiting. The resulting scatterplot of filtered recruitment

versus egg production (proportional to female spawning biomass) shows a flat

relationship over the range of historical levels of egg production. From this

analysis they conclude that, at the observed levels of stock abundance, the

occurrence of strong year classes cannot be directly attributed to stock

abundance and may be linked to factors independent of population density such

as environmental conditions.

The most durable hypothesis concerning environmentally controlled

recruitment is a mainly empirical link between temperature and recruitment,

The relationship is still significant (rank order correlation two-tailed

P-value < 0.05) when using the recruitments from the stock synthesis model for

the year classes 1959-86. Years with cold water temperatures (average

January-March temperature in the second quadrant of Marsden square 120 <

15.0°C) have low mean recruitment, while years with warm water temperature

(>15.0°C) have higher though more variable recruitment.

To simulate a recruitment time series we again used the bootstrap method

adopted last year (Dorn and Methot 1990). The recruitment estimates for the

year classes 1958-87 (30 years) from stock synthesis model form our sample
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space. By sampling with replacement from the observed recruitment time

series, our simulated recruitment process has the following properties:

1) simulated recruitment is independent of female spawning biomass over the

range of historical levels; 2) the recruitment time series has the same

statistical properties as the observed recruitment, particularly the same mean

and variance; and 3) strong assumptions about the pattern of variability in

recruitment that are not supported by the data are avoided.

Harvest Strategies and Risk

Without knowledge of the effect of harvesting on ability of the Pacific

whiting population to produce successful recruitments in a highly variable

ocean environment, we incur a risk of population collapse by taking a harvest.

We assess this risk by focusing on the female spawning biomass. This is

defined as

where POPNt is the population number of an age group, MATUREt is the

fraction of sexually mature females of an age group, PROPFEMt is the female

proportion of total biomass of an age group, and WEIGHTt is the population

weight at age. Figure 21 shows a frequency histogram for 20 replicate l,000-

year simulations of an unexploited Pacific whiting population using the

recruitment resampling method described earlier. When an annual harvest is

taken from the population, the distribution of female spawning biomass will be

shifted towards lower mean levels of female spawning biomass. The risk is the

possibility that harvesting might lower the female spawning biomass to such

low levels that it could no longer produce recruitment to sustain population

abundance even when conditions are favorable for larval survival.
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To assess this risk we used the empirical distribution of female

spawning biomass for an unexploited population-as a benchmark against which we

gauged the magnitude of the disruption that occurs when an annual harvest is

taken from the population. We designated the 0.1 percentile of female

spawning biomass as a cautionary level of female spawning biomass. This

occurs at 457,000 t of female spawning biomass, which is 32% of the mean

unfished female spawning biomass (Fig. 21). We assess the risk of a

particular harvest strategy by determining the probability of female spawning

biomass dropping below this level. The harvest strategies we develop maximize

yield from the fishery subject to the constraint that this probability is at a

selected level. Low-risk harvest strategies are those where the probability

of dropping below this cautionary level is low, and high-risk strategies are

those where the probability is high.

We acknowledge that the 0.1 percentile of unexploited female spawning

biomass is an arbitrary level, and we do not argue that the probability of

recruitment failure increases rapidly below this level, although we do note

that it must increase rapidly below some level. The fact that the Pacific

whiting population persists in an unexploited state at some stable level of

mean abundance suggests that the distribution of unexploited female spawning

biomass is sufficient to maintain the population through all but the most

extraordinary of circumstances. The 0.1 percentile is a level below which the

female spawning biomass has not dropped during our 32 years of observation.

Our confidence in the assumption that recruitment is unaffected by female

spawning biomass erodes rapidly below this point--hence the term cautionary

level.

We consider several classes of harvest strategies: 1) a constant F

strategy; 2) a variable F algorithm developed by Shuter and Koonce (1985); and
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biomass is above the mean level, and a variable F strategy when it is below

the mean. For the variable F algorithm, fishing mortality in a given year (y)

is calculated by

where Fopt is the optimum level of fishing mortality, SBy is the current

female spawning biomass level, and SBopt is the mean female spawning biomass

for the optimal constant F strategy.

The variable F harvest strategy has been used to manage the Pacific

whiting resource since 1985. It was considered superior to constant F

strategies because in simulations it gave a higher mean yield for a given

level of risk. It also provides more protection to the stock in a period of

declining abundance by cutting back on the fishing mortality rate at low

female spawning biomass levels. A disadvantage of this strategy is that it

makes yield from the fishery extremely variable, and this variability

necessarily includes large declines in the yield from one year to the next

when a strong year, class moves out of the fishery. The economic and political

consequences of the variable F strategy have not been confronted in the past

simply because before 1988 the yield from the fishery was far below the

recommendations.

Table 20 gives the parameters used to simulate the dynamics of the

Pacific whiting population. Estimates of sustainable yield for a constant F

strategy, a variable F strategy, and the hybrid harvest strategy are given in

Table 21. The table entries were estimated by averaging 20 replicate l,000-

year simulations. To remove the effect of initial conditions, all simulations

were run for 50 years before beginning to tabulate the summary statistics.
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For each harvest strategy we present three levels of risk (low, moderate, and

high) to bracket viable alternatives and to provide a middle course. It is

important to bear in mind that the labels of low, medium, and high risk are

relative designations, and are not intended to imply judgments about which

strategy is best.

The risk categories were defined as follows. Under a low-risk strategy

the probability of falling below the cautionary female spawning biomass level

is 0.10; for moderate risk it is 0.20; and for high risk it is 0.30. Although

the definitions of these categories are arbitrary, they result in fishing

mortality rates that span the biological reference points commonly used to

guide fisheries management decisions (Sissenwine and Shepherd 1987). The low-

risk options are near a strategy where fishing mortality equals natural

mortality (F - M). Under moderate-risk harvesting strategies, the mean female

spawning biomass is between 48 and 54% of mean unexploited female spawning

biomass --approximately equal to the 50% that the Graham-Schaefer surplus

production model would predict for maximum sustainable yield (Ricker 1975).

The high-risk strategies reduce mean female spawning biomass to 44-47% of the

unexploited level and correspond more closely to a F0.1 strategy. For

reference, we also show in Table 21 the results of simulations using an

exploitation rate that lowers the female spawning biomass to 35% of its

pristine level. High exploitation rates are necessary to fish at the F35%

level because Pacific whiting become mature at a younger age than they recruit

to the fishery. However, it should also be noted that age at first maturity

for the coastal population of Pacific whiting has not been extensively

studied, so the estimates of maturity used in the model are not based on

reliable data.
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Estimates of sustainable yield presented in Table 21 ranged between

168,000 and 202,000 t for the low-risk harvesting policies, between 205,000

and 226,000 t for moderate-risk harvesting policies, and between 227,000 and

247,000 t for the high-risk harvesting policies. The constant F strategy

produced the lowest variability in yield, but also had the lowest mean yield.

The variable F strategy had higher mean yield, but variability in yield was

also higher. The hybrid strategy was intermediate in performance, both in

mean yield and in the variability of yield. This strategy appears to offer a

reasonable compromise policy that protects the stock at low levels of female

spawning biomass, maintains relatively high mean yield, yet avoids the extreme

variability in yield of the variable F strategy. Yield curves for the

constant F policy, the variable F policy,. and the hybrid policy are shown in

Figure 22.

YIELD FORECASTS FOR 1991-93 AND 1991 ACCEPTABLE BIOLOGICAL CATCH

Since 1967, the Pacific whiting fishery has been supported by strong

year classes occurring every 3 or 4 years. The 1980 and 1984 year classes

have dominated the catch in recent years. The 1984 year class constituted

62.4% of the 1989 U.S. fishery catch of whiting by number, and most of the

remaining catch was contributed by the 1980 year class (25.8%). The

projection of steeply declining yields in last year's stock assessment was a

consequence of the advancing age of these two large year classes and the lack

of significant recruitment since the 1984 year class. We have moderated our

projections based on information that has become available since last year.

The most consequential of this new information is the estimate of the

population biomass from the 1989 stock assessment surveys. Despite an

aggregate harvest of over 850,000 t between the 1986 and 1989 surveys, the



39

total biomass estimate in 1989 was only 24% lower than the 1986 estimate,

indicating a decline of approximately 500,000 t in population biomass. This

moderate decline is even more surprising when it is noted that 88% of the

population biomass in 1989 was age 5 and older, and should also have been

surveyed in 1986. The synthesis model increases the abundance of the 1980 and

1984 year classes to fit the 1989 survey biomass observation. Moreover, our

final synthesis model relaxes the assumption made in last year's assessment

that the younger age groups are fully selected by the triennial surveys. As a

result, the projections of declining spawning biomass as the 1980 and 1984

year classes move out of the population are not nearly as immediate nor as

steep as in last year's assessment (Fig. 23).

Evidence of significant recruitment to the population since the 1984

year class remains sketchy. A moderately abundant 1987 year class was

detected by the 1989 acoustic survey and is evident as a mode at 40 cm in a

preliminary tabulation of the 1990 fishery length frequency--but not as

prominently as the 1984 year class in 1987 (Fig. 24). The age-2 abundance of

the 1987 year class was estimated by the stock synthesis model as 0.903

billion fish, close to average recruitment for the years 1960-89. There is

also some evidence that the 1988 year class may also be of moderate size. The

trawl survey in 1989 encountered age-l fish (Table 6), and the U.S. fishery

length frequency in 1990 shows the age-l fish as a flat shoulder at 34 cm on

the ascending limb of the histogram.

Most of the indeterminacy in the yield projections for 1991-93 is due to

our uncertainty of the year-class sizes for 1989-91. Our ignorance is most

crucial with respect to the timing of the next strong year class. We consider

four alternative recruitment scenarios. In scenario A, the 1989 year class is

strong, followed by weak year classes in 1990 and in 1991. In scenario B, the
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1989 year class is weak, the 1990 year class is strong, and the 1991 year

class is weak. In scenario C, a strong year class does not occur until 1991.

Scenario D represents the worst case: weak year classes in all 3 years. A

strong year class is operationally defined as the mean of the top 25% of the

historical recruitments (age-2 abundance 3.526 billion), and a weak year class

as the mean of the historical recruitments below the 50th percentile (age-2

abundance 0.283 billion).

Although these recruitment scenarios are intended to represent plausible

alternatives, we do not argue that they are equally likely. The preliminary

tabulation of the length frequency for the 1990 U.S. fishery shows no sign of

a mode of small fish less than 30 cm that would indicate a strong 1989 year

class (Fig. 24). The detection of age-0 fish by the acoustic survey in 1989

is worth mentioning even though the abundance estimate is too unreliable to be

used in quantitative projections. Also, 1989 and 1990 were cold years

(Jerrold Norton, Pacific Fisheries Environmental Group, P.O. Box 831,

Monterey, California 93942. Pers. commun., April 1990), and a strong year

class has never been observed during a cold year.

We used a deterministic version of the population simulation model with

the information in Table 22 to forecast the yield for 1991-93. The population

abundance for the beginning of 1989 (estimated by the stock synthesis model)

was updated to the start of 1991 by removing the yield for 1989 and 1990. For

the 1988 year class, age-2 recruitment was set to 1.230 billion (the mean

1960-89 recruitment), reflecting our conclusion that it is most likely of

moderate size. The weight-at-age vectors given in Table 22 for the U.S.

catch, the Canadian catch, and the Pacific whiting population are averages of

the weight at age for 1987-89. These vectors represent the weight at age

currently observed in the stock rather than the long-term average.
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Table 23 gives the projected yields for 1991-93 under the hybrid policy

and the constant F policy for the different risk levels discussed in the

previous section. The yield for 1991 ranged from 146,000 to 327,000 t. The

risk level contributes about 106,000 t of the range, the recruitment scenario

contributes about 12,000 t, and the F strategy contributes about 63,000 t.

The low-risk scenario provides greater stock protection than seems necessary,

thus it is not recommended. The moderate-risk, hybrid strategy specifies a

total yield of 253,000 t for recruitment scenarios B, C, and D, which assume

that the 1989 year class is weak. The high-risk hybrid strategy specifies a

total yield of 311,000 t for the same situations. In view of the

uncertainties involved in our estimates of the current stock abundance, we

feel reluctant to recommend the high-risk option. We propose a total ABC of

253,000 t in 1991. Pending a binational agreement on an allocation plan, we

make no recommendation on allocating the yield between the U.S. and Canadian

fisheries.

In 1992, the yield projections ranged from 133,000 to 295,000 t. Under

the optimistic recruitment scenario A, which assumes a strong 1989 year class,

the yield for 1992 will still be close to the 1991 yield. A strong 1989 year

class will not have a great deal of influence on the female spawning biomass

or the recruited biomass until 1992 and later. Under the less optimistic

scenarios B, C, and D, the yield for 1992 will drop below the yield for 1991.

Because of the high level of uncertainty concerning the 1989 and 1990 year

classes, forecast of the yield for 1993 is purely speculative. However, it is

unlikely to exceed 313,000 t, and may be as low as 116,000 t. Under most

recruitment scenarios, yield is projected to show a declining trend over the

next 3 years.
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Table 1 .--Annual catches of Pacific whiting (1,000 t) in U.S. and Canadian
management zones by foreign, joint venture (JV), and domestic
fleets, 1966-89.
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Table 2.- -Catch at age (millions of fish) for the Pacific whiting fisheries,
1978-89. Separate tables are given for the U.S. fisheries, the
Canadian fisheries, and the combined fisheries. These totals are
the aggregate catch from the foreign, joint venture, and domestic
fisheries.

Sources: Jerald Berger, U.S. Foreign Fishery Observer Program, Alaska Fisheries Science Center, National Marine
Fisheries Service, NOAA, BIN C15700, 7600 Sand Point Way  NE., Seattle, WA 98115, Pers. Canadian
statistics reported by Mark Saunders, Pacific Biological Station,

commun., May 1990.
V9R 5K6, Pers. commun., May 1990.

Department of Fisheries and Oceans, Nancimo, B.C.



50

Table 3.--U.S. and Canadian mean fishery length at age (cm) and coefficients
of a length-weight relationship (cm to g) for Pacific whiting in
1989.

Sources: Jerald Berger, U.S. Foreign Fishery Observer Program, Alaska
Fisheries Science Center, National Marine Fisheries Service, NOAA, BIN C15700,
7600 Sand Point Way NE, Seattle, WA 98115, Pers. commun., May 1990. Canadian
statistics reported by Mark Saunders, Pacific Biological Station, Department
of Fisheries and Oceans, Nanaimo, B.C. V9R 5K6, Pers. commun., May 1990.
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Table 4.--Analysis of variance table for the logarithm of Pacific whiting
weight, using the logarithm of length as a covariate.
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Table 5.- -Parameter estimates for a factorial analysis of variance of the
logarithm of Pacific whiting weight using the logarithm of length as
a covariate. The geographic areas used as factor levels are the
same as the geographic strata used to compile catch at age and
length at age: EUR (the intercept characteristic)--Monterey and
Eureka INPFC areas, SCOL --south Columbia INPFC area, VNC --north
Columbia and U.S. Vancouver INPFC area. The time periods used as
factor levels are early (April-June), middle (July-August), and late
(September-November).
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Table 5 .--Continued.
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Table 6 .--Estimated numbers at age (millions of fish) for Pacific whiting by
INPFC area for 1989 west coast bottom trawl survey. These estimates
were produced using standard area-swept methods (Weinberg 1984).

Conc. = Conception.
Mont. = Monterey.
SCol. = Southern portion of Columbia.
NCol. - U.S. Van. = Northern portion of Columbia and U.S. Vancouver.
Can. Van. = Canadian portion of Vancouver area, up to lat. 49°35'N.
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Table 7.- -Estimated biomass at age (1,000 metric tons) by INPFC area for 1989
west coast Pacific whiting bottom trawl survey. These estimates
were produced using standard area-swept methods (Weinberg 1984).

Conc. = Conception.
Mont. = Monterey.
SCol. = Southern portion of Columbia.
NCol.-U.S. Van. = Northern portion of Columbia and U.S. Vancouver.
Can. Van. = Canadian portion of Vancouver area, up to-lat. 49°35'N.
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Table 8 .--Estimated numbers at age by INPFC area (millions of fish) for 1989
west coast Pacific whiting acoustic survey. These estimates were
produced using standard methods for analyzing acoustic surveys of
fish populations. as described by Dark et al. 1980.

Conc. = Conception.
Mont. = Monterey.
SCol. = Southern portion of Columbia.
NCol.-U.S. Van. = Northern portion of Columbia and U.S. Vancouver.
Can. Van. = Canadian portion of Vancouver area, up to lat. 50°00'N.
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Table 9.- -Estimated biomass at age (1,000 metric tons) by INPFC area for 1989
west coast Pacific whiting acoustic survey. These estimates were
produced using standard methods for analyzing acoustic surveys of
fish populations as described by Dark et al. 1980.

Conc. = Conception.
Mont. = Monterey.
SCol. = Southern portion of Columbia.
NCol.-U.S. Van. = Northern portion of Columbia and U.S. Vancouver.
Can. Van. = Canadian portion of Vancouver area, up to lat. 50°00'N.
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Table l0. -- Estimates of total biomass (1,000 metric tons) for the 1989 trawl
and acoustic surveys by region. CV-coefficient of variation.

Conc. = Conception.
Mont. = Monterey
Columb. = Columbia.
U.S. Van. = U.S. Vancouver.
Can. Van. = Canadian portion of Vancouver area, up to about lat. 50°00'N.
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Table 11 .--Estimates of Pacific whiting biomass (1,000 metric tons) by region
resulting from the NMFS bottom trawl and acoustic surveys in 1977,
1980, 1983, 1986, and 1989. The trawl survey estimates of biomass
in the Canadian zone in 1977 and 1986 were interpolated by
multiplying the acoustic biomass in 1977 and 1989 by the ratio of
the aggregate trawl biomass for the Canadian Vancouver INPFC area
for the surveys in 1980, 1983, and 1989 to the aggregate acoustic
biomasses for the same years. The expansion factor used to
account for the unsurveyed biomass north of survey grid has not
been used to adjust these biomass estimates. BT -bottom trawl
estimate, A-acoustic estimate, T-total.

Mont. = Conception and Monterey.
Columb. = Columbia.
U.S. Van. = U.S. Vancouver.
Can. Van. = Canadian portion of Vancouver area, up to about lat. 50°00'N.
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Table 12. --Natural mortality estimates for Pacific whiting using estimates of
abundance from the triennial NMFS surveys and the catches
occurring from one survey to the next. Only the dominant year
classes (1967, 1970, 1973, 1977, 1980, and 1980) were used to
estimate natural mortality. Starting abundance, ending abundance,
and aggregate catch are in millions of fish.
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Table 13. - -The effect of modeling the transboundary migration of Pacific
whiting on the fit of the synthesis model as measured by the
log(likelihood). The headings "U.S. survey" and "Canadian survey"
refer to the NMFS triennial survey data from the U.S. and Canadian
zones respectively. In the models reported here, both the U.S.
and Canadian survey biomass estimates were given an emphasis
weight of 5.0. The alternatives considered were 1) a single
migration curve, 2) annual migration coefficients estimated for
the survey years only, and 3) annual migration coefficients
estimated for all years.
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Table 14. --Population numbers at age (millions of fish) for the coastal
population of Pacific whiting as estimated by a geographic version
of the stock synthesis model, 1977-89. Separate tables are given
for the U.S. management zone, the Canadian management zone and the
total west coast population.
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Table 15 .--The implications of differing assumptions concerning the
selectivity of immature fish to the triennial assessment surveys
in the U.S. zone. (A = selectivity is fixed at 1.0 for all ages;
B = selectivity of age-2 fish estimated, selectivity fixed at 1.0
for all other ages; C = selectivity estimated for ages 2-3,
selectivity fixed at 1.0 for all other ages; D = selectivity
estimated for ages 2-4, selectivity fixed at 1.0 for all other
ages)
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Table 16. - -Effect of changing the emphasis on the log(likelihood) for Pacific
whiting survey biomass. All other runs of the model were made
with the emphasis set at 5.0. Less negative values of the
log(likelihood) indicate a better fit to that type of data. The
headings "U.S. survey" and "Canadian survey" refer to the NMFS
triennial survey data from the U.S. and Canadian zones,
respectively.

*Biomass of ages 2 and older at the beginning of 1990.
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Table 17 .--Selectivity at age used in reconstructing the historical
recruitment and abundance of Pacific whiting. For all data
sources except the NMFS triennial survey data from the U.S. and
Canadian zones, a double logistic curve was used to model
selectivity. For the NMFS triennial survey data from the U.S.
zone, selectivity was fixed at 1.0 except for ages 2 and 3 where
individual selectivity coefficients were estimated. For the NMFS
triennial survey data from the Canadian zone, only the descending
limb of the selectivity curve was modeled using a logistic
function. The headings "U.S. survey" and "Canadian survey" refer
to the NMFS triennial survey data from the U.S. and Canadian
zones, respectively.
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Table 18. - Time series of biomass and fishing mortality for Pacific whiting as
estimated by a geographic version of the stock synthesis model.
U.S. and Canadian fishing mortality rates are annual rates
relative to the portion of the stock in their respective national
zones. Biomass is in millions of metric tons of age-2 and older
fish, and is presented for the beginning of the year and as the
mean within the year. Recruitment is presented as billions of
age-2 fish at the beginning of the year.
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Table 19.- -Modeling the effect of discard on estimated recruitment and biomass
using the stock synthesis model. Percent discard is determined
relative to the total yield in biomass from a fishery. The level
of discard in the U.S. and Canadian fisheries for Pacific whiting
was assumed to be equal for this analysis. Mean age-2 recruitment
is in billions of fish, age 2+ biomass is in millions of metric
tons.



Table 20.- -Parameter values for the revised age-structured simulation model used to estimate
long-term Pacific whiting yield.

USWT
CANWT
POPWT
USSLCT
CANSLCT
MATURE
PROPFEM
USCAN
POPINIT
NMORT

United States fishery weight at age (g).
Canadian fisher weight at age (g).
Population weight at age (g).
U.S. fishery selectivity at age.
Canadian fishery selectivity at age.
Proportion of sexually mature females.
Proportion by weight of females in the population.
Proportion of fish migrating into Canadian zone.
Initial population vector (billions).
Natural mortality rate.
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Table 21.- -Sustainable yield for different management strategies estimated by
averaging the results of 20 replicate simulations of the Pacific
whiting fishery of 1,000 years each using the revised age-
structured simulation model. SBopt used in the variable F and
hybrid algorithms is defined as the mean female spawning biomass
level at a constant F strategy where the probability is 0.20 that
the female spawning biomass goes below the cautionary level of
female spawning biomass (SBcaut ) of 457,000 metric tons. The
average of the annual F values, reported for the variable and
hybrid F strategies, is not equal to Fopt because spawning biomass
is more frequently below SBopt
are reported in 1,000 t (kt).

than above it. Yield and biomass

Fopt = level of fishing mortality required to achieve the stated

cv
management objective.

= coefficient of variation.



Table 22. --Summary of information used for the short-term yield forecasts of the Pacific whiting resource.

I. Beginning of the year population abundance (billions of fish) by age

II. Current weight at age (kg)

t = metric tons.
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Table 23. - -Summary of the 1991-93 potential annual yields. Yield and biomass
projections are in thousands of tons. Recruitment scenarios are
described in Item VII.

I. Hybrid, low-risk strategy II. Constant F, low-risk strategy
(F = 0.17)

Recruit. Spawn. Age-2+ Recruit. Spawn. Age-2+
scenario Year Yield biomass biomass scenario Year Yield biomass biomass

III. Hybrid, moderate-risk IV. Constant F, moderate-risk
strategy (F = 0.33) strategy (F = 0.24)

Recruit. Spawn. Age-2+ Recruit. Spawn. Age-2+
scenario Year Yield biomass biomass scenario Year Yield biomass biomass
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Table 23.- -Continued.

V. Hybrid, high-risk IV. Constant F, high-risk
strategy (F = 0.42) strategy (F = 0.31)

Recruit. Spawn. Age-2+ Recruit. Spawn. Age-2+
scenario Year Yield biomass biomass scenario Year Yield biomass biomass

VII. Recruitment scenarios

A.

Year class Annual recruitment

1989 strong
1990 weak
1991 weak

B. 1989 weak
1990 strong
1991 weak

C.

D.

1989 weak
1990 weak
1991 strong

1989 weak
1990 weak
1991 weak

Note: Strong - 3.526 billion (mean of top 25% historical recruitment)
Weak recruitment - 0.283 billion (mean of historical recruitment
below median)
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Figure 1. --Geographic regions along the west coast of the United States
defined as strata to estimate catch at age and length at age. EUR
region - lat. 39°00'N to lat. 43°00'N SCOL region - lat. 43°00'N
to lat. 45°46'N, VNC region - lat. 45°46'N to the U.S.-Canada
border.
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Figure 2.-- Pacific whiting trawl position plots for April 1989 to June 1989
for the U.S. joint venture fishery. Each reported trawl position
is marked by a "+". The black areas of the plots represent many
overlapping trawl positions.
at 200 meters.

A line is drawn at the shelf break



Figure 3.-- Catch at age by geographic region in millions of fish for the 1989
Pacific whiting fishery. Sources: Jerald Berger, pers. commun.,
May 1990, and Mark Saunders, pers. commun., May 1990).
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Figure 4. --Percent receipts of Pacific whiting by nationality, 1986-89.
Included are both foreign fishery catches and joint venture
deliveries. Source: Jerald Berger, pers. commun., May 1990.
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Figure 5. --Mean U.S. fishery length at age for the months April-June (1978-
89).
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Figure 6. --A comparison of the growth trajectory of the 1980 and 1984 year
classes. Length at age
U.S. fishery

is the mean estimated from samples of the
for Pacific  whiting.
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Figure 7. --Mean weight at age of Pacific whiting in the U.S. fishery for the
early (April-June), middle (July-August), and late (September-
October) time periods from 1978 to 1989.
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Figure 8. --The distribution of Pacific-whiting catch per unit effort (CPUE)
observations for the 1989 west coast bottom trawl survey.
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Figure 8. --Continued.
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Figure 9.-- Location of transect lines and geographic summary areas for the
1989 west coast acoustic survey of Pacific whiting.
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Figure 10. --Approximate locations of Pacific whiting aggregations encountered
during the 1989 west coast acoustic survey.



Figure ll.-- Estimated numbers (millions) at length of Pacific whiting by International North Pacific Fisheries
Commission (INPFC) region for 1989 west coast acoustic survey.
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Figure 12. --Estimated biomass (metric tons, t) by region for the triennial
west coast assessment surveys in 1977, 1980, 1983, 1986, and 1989.
The estimates were obtained by summing the bottom trawl and
acoustic estimates. Sources: Dark et al. 1980, Weinberg et al,
1984, Nelson and Dark 1985, Coleman 1986, Coleman 1988, Neal
Williamson, pers. commun., May 1989
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Figure 13. --Annual migration curves for 1982-89 estimated by a version of the
stock synthesis model incorporating geographic structure. These
curves represent the annual age-specific fraction of the
population migrating into Canadian waters.
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Figure 14. --Selectivity curves for the U.S. and Canadian fisheries estimated
by the stock synthesis model.
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Figure 15.-- Fit to the triennial National Marine Fisheries Service assessment
surveys in U.S. and Canadian waters using a geographic stock
synthesis model. Observed (obs.) and expected (exp.) survey
biomass is expressed in millions of metric tons (t).
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Figure 16. --The effect of changing the emphasis factor for the survey biomass
log(likelihood) on recruitment estimates for the Pacific whiting
year classes 1977, 1980, 1984, and 1987 (top panel), and on the
likelihood components for the different sources of information
used to fit the synthesis model (bottom panel). A less negative
value for an information source indicates a better fit of the
model to the data from that source.
and "Canadian survey"

The headings "U.S. survey”
refer to the NMFS triennial survey data from

the U.S. and Canadian zones, respectively.
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Figure 17. --A comparison of estimates of Pacific whiting recruitment and
population biomass (metric tons, t) for two estimation runs of the
stock synthesis model. In one run the 1989 survey biomass is
given the same weight as the other survey biomass observations.
In the other run the 1989 survey biomass was given no weight in
fitting the model.
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Figure 18. --The sensitivity of the model fit to the choice of a constant
natural mortality rate, as measured by the overall
log(likelihood). The log(likelihood) was maximum between 0.24 and
0.26. Estimated biomass for the start of 1990 is expressed in
millions of metric tons (t).
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Figure l9.-- Time trend of U.S. and Canadian full recruitment fishing mortality
(F) for the coastal Pacific whiting population. Full recruitment
occurs at age 8 in the U.S. fishery, and at age 11 in the Canadian
fishery. The fishing mortalities are annual rates and apply to the
portion of the stock that is in each national zone. A single mean
migration curve was used to split the stock between U.S. and
Canadian waters for all years.
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Figure 20.-- Female spawning biomass versus recruitment for Pacific whiting as
estimated b the stock synthesis model. Dotted diamonds indicate
warm (>15.0°C) years, the unfilled diamonds the cold (<15.0°C)
years.
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Figure 21.-- Frequency histogram of female spawning biomass (million metric
tons, t) resulting from 20 replicate 1,000 year simulations of an
unexploited Pacific whiting population. Recruitments to drive the
model were obtained by resampling from the observed recruitment
for 1958-87 year classes. A cautionary level of female spawning
biomass of 457,000 t was identified as the 0.1 percentile of the
empirical distribution of female spawning biomass for an
unexploited population.



Figure 22. --Comparison of the constant F strategy, the variable F strategy,
and the hybrid strategy for managing the Pacific whiting fishery.
Top panel, yield curves in millions of metric tons (t); middle
panel, percent of years
of 457,000 t; and

below a cautionary female spawning biomass
bottom panel, percent of pristine female

spawning biomass.
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Figure 23. --Time trend of Pacific whiting female spawning biomass (million
metric tons, t) for 1958-91. The two horizontal lines in the
graph indicate the average unexploited female spawning biomass
level and the cautionary female spawning biomass level used in the
analysis to define risk. The average female spawning biomass from
1958 to 1990 was 0.892 million t. Trajectories A, B, C, and D
represent the projected female spawning biomass for 1991-94 with a
moderate risk hybrid harvesting strategy (F = 0.34) under
recruitment scenarios A, B, C, and D. (See Table 23 for a
description of the different recruitment scenarios.)
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Figure 24.-- Length frequency and catch at age of Pacific whiting in the U.S.
management zone including the foreign, joint venture
fisheries. The length-frequency histogram for 1990

and domestic
is based on a

preliminary tabulation of a small subsample of the available data.
Source: Jerald Berger, pers. commun., May 1990.
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